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The Messina bridge design

I will try to explain the problem we had to face and solve to grant the 

performance of the Messina bridge for a life of 200 years, under different 

actions:

➢ Design wind speed: 60 m/s

➢ Road and Railway traffic

➢ Seismic action: 6.3 m/s2
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Historical overview

A suspension bridge solution was chosen, at the 

beginning, with 2 spans since at that time it seemed 

almost impossible to build a bridge with a main span 

of 3300 m because of wind action and in particular to 

the 2 degree of freedom flutter instability. 
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Great Belt East Bridge(1998)

Akashi Strait Bridge(1998)
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http://www.copenhagen.naruhodo.com/topics/bridges/storebelt.html
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Static loads

The deck produces the most important static load

that is transferred through the hangers to the main cable

and  from the main cable to the top of the towers,

producing a high bending moment

that affects in a large amount

the design of the bridge 

The drag of the deck 

must be as low as

possible
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Deck shape

Humber Bridge (1410 m)Tsing Ma Bridge (1377 m)

Storebaelt Bridge (1624 m) 

In order to have low drag

an airfoil section must be used

Messina Bridge (3300 m)
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Wing like deck shape

This type of section do not suffer of one degree of freedom instability 

like old Tacoma Narrow Bridge

But it suffer of two degrees of freedom instability of the flutter type

I will try to explain in a simple way the mechanism
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The aerodynamic force are:

Instability problems or aeroelasticity
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Linearization of the aeroelastic terms

The total torsional stiffness is:
tot str aer

t t tK K K= +

Being          negative and proportional to V2aer

tK

First vertical mode First torsional mode

Increasing the wind speed         decreases and as a consequence the 

torsional frequencies are decreasing

tot

tK

Their coupling gives rise to flutter instability
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2 d.o.f. instability (flutter)

When this two frequencies become equal 

a two degree of freedom flutter is 

produced:
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Why this is a problem increasing the span length?
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Vflutter = 40 m/s

If we should use the deck aerodynamic properties of the  Humber or 

Storebealt deck section with the Messina structural properties

 the flutter wind speed should be:

Aerodinamic optimization
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141) Structural solution:

by increasing the structural torsional stiffness of the deck (like Akashi )

How to come out from this problem?

2 ways:

Drawbacks: 

• High drag

• Not feasible increasing the span length since the cable 

contribution to the torsional stifness becomes larger and larger and 

the effect of deck stiffness becomes negligible 
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152)    Aerodynamic solution:

by decreasing the aerodynamic torsional stiffness

How to come out from this problem?

2 ways:
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The secret of Messina bridge is the multi box deck section with:

• a very low lift and moment coefficients

Messina bridge solution:

-10 -5 0 5 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

angle of attack (deg.)

C
D
 -

 C
L

C
D
, C

L
, C

M

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

C
M

C
L

C
D

C
M



Mechanical 
Department 

G. DIANA

17

The secret of Messina bridge is the multi box deck section with:

• a very low lift and moment coefficients

• transparent wind screen with aerodynamic damping devices

Messina bridge solution:
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The aeroelastic problem

Damping variation increasing the wind speed
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• Maximum train speed: 130 km/h

• Maximum wind speed:   47 m/s

• Maximum seismic acceleration: 2.6 m/s2

Railway runnability
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Railway runnability
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Railway runnability
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What are the problems related to train runnability?

1. Vertical and horizontal slope of the deck due to global deflection 

of the bridge under traffic and wind action

2. Fatigue and noise due to local interaction between train and 

railway box girder

3. Wind action on train runnability

4. Seismic action on train runnability

Railway runnability
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Railway runnability
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Railway runnability
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25In order to analyse these problems a suitable model was developed to 

take into account train and bridge interaction.

This model was checked by a research cooperation between Società 

Stretto di Messina and Honshu-Shikoku Bridge Authority on the Seto-

Ohashi Bridge 

Railway runnability

Seto-Ohashi Bridge

1100 m main span



Mechanical 
Department 

G. DIANA

26

And a more refined scheme to take into account the local effects:

Bridge model

The model uses a Finite Element Model scheme of the bridge made by 

beam elements to study global effects.
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The train dynamics is simulated by a multibody model . 

Railway vehicle model

It is very important to reproduce wheel-rail interaction. 

27
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Railway vehicle model

Ft

Fn

Ft

Fn

The problem is complex and I don’t want to go into detail that are 

reported in the paper 

Contact forces are function of the bridge motion and of the train motion

and represent the most difficoult and important part of the whole model. 
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• maximum slope in the vertical plane as a function of span length

Global effects on the deck

Critical for span length of 1000 m not for long span suspension bridges 

SLOPE IN THE VERTICAL PLANE

0.88 m

2.1 m

2.2 m
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LOCAL CUSPS OF THE DECK

• Wind action produces horizontal deflection of the deck

• minimum curvature radius of the rails, in the vertical

and horizontal plane are controlled by the design;

• position of the joint is very important;

Railway joint

Transition girder

Global effects on the deck
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INFRASTRUCTURE

A A  

A 

B 

C 

Rubber pad 

Direct fastening track solution

Slab track solution II

•
lateral stopper• Rubber 

elements

sleeper

Local effects

The type of infrastructure is very important

Transmitted force

Produce high noise and fatigue

problems on the upper plate of the

railway box

It is a very good solution but it

increases too much the deck

weight
Embedded rail
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In order to reduce the wind 
forces on the train there 
are wind barriers at the 

deck edges 

But also solid barriers on 
the railway girder 

reducing the wind speed 
in large amount

Wind action on the bridge and on the train
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Wind profiles on the running lanes
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The incoming wind is turbulent and produces fluctuations of 

the forces on the train function of the aerodynamic coefficients 

of the train and of the train velocity

Wind action
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Wind produces a lateral load on the train that increases the lateral 

forces between wheel and rail and can also produce overturning that 

represents the critical situation

The motion of the bridge makes the problem more critical

Wind action

In figure, the overturning coefficient for a wind speed of 47 m/s and 

train speed of 130 km/h for an ETR500 vehicle is reported
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Time histories of the simulated 

earthquake

Overturning and derailment on 

ground and on the bridge

Seismic action
The time history of the ground motion is reproduced at the cable  

fundations and at the tower base and the response of the bridge is 

computed with the train running on the bridge under cross wind 

conditions
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